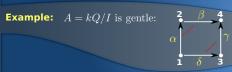
Notations & Definitions:

- $k = \overline{k}$ a field. Q := a finite quiver (directed graph)
- I:= an ideal of kQ, generated by paths of length more than 2
- A = kQ/I := a finite dim. alg.

String & Gentle Algebras: A is a string algebra, if

- (i) for arrow α, at most ∃! arrows β and γ s.t αβ ∉ I and γα ∉ I.
 (ii) at each vertex, ∃ at most two incoming and outgoing arrows.
 - A is called **gentle**, if additionally
 - (iii) A set of paths of length two in Q generates I.
 - (iv) for α , at most $\exists !$ arrows β and γ s.t $0 \neq \alpha \beta \in I$ and $0 \neq \gamma \alpha \in I$.

In a string algebra kQ/I, a **string** is (an orientation forgetting) walk in Q that neither goes through a relation, nor along an edge and then immidiately back along the same edge.



τ -tilting Theory: A-module X is called:

- τ -rigid if $Hom_A(X, \tau X) = 0$;
- τ -tilting if X is τ -rigid and |X| = |A|;
- Support τ -tilting if $\exists e = e^2 \in A$, s.t X is $A/\langle e \rangle$ -tilting module.
- **Thm**(\mathbb{R}): Let A be a string algebra.
- (I) Indecomposables of modA are string and band modules;
- (II) Every indecomp. τ -rigid A-module is a string module.

 $X = S_4 \oplus I_3 \oplus S_1$ is support τ -tilting, where $e = e_2$.

Notice, $X \leftrightarrow \{ \stackrel{4}{\bullet}, \stackrel{1}{\longleftarrow} 3, \stackrel{1}{\bullet} \}.$

τ-Tilting Theory of ² Gentle Algebras

Kaveh Mousavand

k.mousavand@lacim.ca

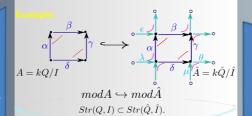
Fringed Algebras:

A vertex of a gentle bound quiver (Q, I) is *defective* if it does not have exactly two incoming and outgoing arrows

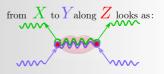
Prop (BDMTY):

Each gentle algebra A=kQ/I canonically embeds into a gentle algebra $\hat{A}=k\hat{Q}/\hat{I}$ satisfying:

- Q is a subquiver of \hat{Q} and \hat{I} contains I;
- Every vertex of Q is non-defective in \hat{Q} .



If X,Y are strings, a $m{Kiss}$



Lemma: Every kiss induces a morphism between the string modules!

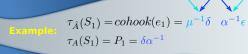
Example: Let $X = \theta \delta \alpha^{-1} \epsilon$ and $Y = \mu^{-1} \delta \lambda$ then $Z = \delta$.

 $cohook(X) := cohook \ completion \ \text{of} \ X \in Str(A),$ in (\hat{Q}, \hat{I}) is obtained by adding the outgoing arrow to both ends of X and then longest incoming strings.

cohook(X):

Thm(BDMTY): If X, Y in Str(A):

- $\tau_{\hat{A}}Y = cohook(Y);$
- $\tau_A Y$ is a submodule of $\tau_{\hat{A}} Y$.
- $Hom_{\hat{A}}(X, \tau_{\hat{A}}Y) \simeq Hom_{A}(X, \tau_{A}Y).$



Thm(BDMTY): If A gentle and $X, Y \in Str(A)$,

- Elements of $Hom_A(X, \tau_A Y)$ and $Hom_{\hat{A}}(X, \tau_{\hat{A}} Y)$ corresponding to kisses from cohook(X) to cohook(Y) forms a basis.
- $\#kiss(cohook(X), cohook(Y)) = dimHom_{\hat{A}}(X, \tau_{\hat{A}}Y) \\ = dimHom_{A}(X, \tau_{A}Y).$
- ullet \exists a bijection

References & Sponsors:

[BDMTY] T. Brüstle, G. Douville, K. Mousavand, H. Thomas, E. Yıldırım, On combinatorics of gentle algebras, arXiv:1707.07665.

BR] M. C. R. Butler, C. M. Ringel, Auslander-Reiten sequences with few middle terms, Comm. in Algebra. 15 (1987).

