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Abstract. In this note we are mainly concerned with the geometric behavior

of bricks (Schur representations) over finite dimensional algebras. In partic-

ular, we first motivate and discuss two open conjectures which establish new
connections between algebro-geometric aspects of representation theory and

other areas, such as combinatorics, lattice theory and homological algebra.

Then, we summarize some of the new results in this direction, including a
theorem which significantly reduces our conjectures to a particular family of

algebras. We also verify the conjectures for some important classes of alge-
bras and outline our methodology to treat the general case. The last section

comprises of some remarks on our ongoing research and future steps, as well

as some related problems that could be investigated.
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1. Motivations and Open conjectures

Below, k is an algebraically closed field, and Λ stands for a finite dimensional
associative k-algebra with multiplicative identity 1Λ. With no loss of generality we
always assume Λ is basic and connected. Thus, the length of each Λ-module is the
same as its dimension as a k-vector space. By ModΛ we denote the category of all
left Λ-modules, and modΛ specifies the full subcategory of ModΛ consisting of all
finitely generated Λ-modules. Moreover, let Ind(Λ) and ind(Λ) respectively denote
the collection of isoclasses of indecomposable modules in ModΛ and modΛ. Under
these standard assumptions, Λ is isomorphic to a quotient algebra kQ/I, where Q
is a finite quiver (i.e, an oriented graph) and I is an admissible ideal in the path
algebra kQ. Consequently, every X in ModΛ can be viewed as a representation of
the bound quiver (Q, I) and there is an equivalence between the categories ModΛ
and Rep(Q, I), where the latter denotes the category of all representations of (Q, I).
This equivalence also restricts to that of modΛ and rep(Q, I), and allows us to
interchangeably use the terms modules and representations of Λ. Here rep(Q, I)

2020 Mathematics Subject Classification. 16D80,16G20,16G60,05E10.
The second-named author was supported by the National Sciences and Engineering Research

Council of Canada, and by the Canadian Defence Academy Research Programme.

1



2 KAVEH MOUSAVAND, CHARLES PAQUETTE

denotes the full subcategory of Rep(Q, I) which consists of only finite dimensional
representations of (Q, I). This also justifies the term representation-finite (or rep-
finite, for short), used for those Λ for which ind(Λ) is finite. For the rudiments of
representation theory of finite dimensional algebras, we refer to [ASS, SS], where
the reader can also find all the standard terminology and materials used below.

A Λ-module M is called a brick if EndΛ(M) is a division algebra. Bricks are
also known as Schur representations of the bound quiver (Q, I) associated to Λ. By
Brick(Λ) and brick(Λ) we respectively denote the collection of isoclasses of bricks
in ModΛ and modΛ. Evidently, Brick(Λ) ⊆ Ind(Λ), and it is well-known that
Ind(Λ) = Brick(Λ) is equivalent to ind(Λ) = brick(Λ), which implies Λ is rep-finite.
We note if M is a brick, each nonzero endomorphism of M in ModΛ is invertible.
Because k is algebraically closed,M in modΛ is a brick if and only if EndΛ(M) = k.
We say Λ is brick-finite provided brick(Λ) is finite. Thus, every rep-finite algebra
is evidently brick-finite, but the converse is not true. In fact, each rep-infinite local
algebra admits a unique brick (for example, consider Λ = k[x, y]/J , where J is
the ideal generated by {x2, xy, yx, y2}.). Hence, for a family F of algebras, it is
an interesting (and a priori hard) problem to find explicit criteria to decide which
algebras in F are brick-finite and which ones are not. As discussed below, we view
brick-finiteness as a natural generalization of representation finiteness. As briefly
discussed below, there are strong combinatorial, algebro-geometric and homological
motivations and arguments which support this perspective.

Since the problem of brick (in)finiteness is interesting only for representation
infinite algebras, henceforth we implicitly assume Λ is representation infinite. In
particular, for a family F of rep-infinite algebras, our primarily goal is to use
combinatorial, homological, lattice theoretical and algebro-geometric realizations of
brick (in)finiteness and enrich the dictionary between these domains. This diverse
range of tools also allows us to articulate our open conjectures in different languages.
In doing so, we mainly use [AIR], [DIJ], [DI+], and [CKW]. In particular, the
more advanced techniques and conceptual interactions between different domains
which are treated here rely on the aforementioned papers. Before we can state our
conjectures and results, we need to fix some notations.

For each quiver Q, by Q0 and Q1 we respectively denote the set of vertices and
arrows of Q. Observe that the rank of the Grothendieck group of Λ is |Q0|. A
dimension vector d of Λ is just a vector in the positive cone of the Grothendieck

group. That is d ∈ ZQ0

≥0, and the affine variety mod(Λ, d) consists of all representa-

tions of (Q, I) whose dimension vector is d, on which the general linear group GL(d)
acts via conjugation. If OM denotes the GL(d)-orbit ofM in mod(Λ, d), each point
in OM corresponds to a Λ-module which is isomorphic to M . The collection of
irreducible components of mod(Λ, d) is denoted by Irr(Λ, d), and Z ∈ Irr(Λ, d) is a
brick component if it contains a brick. These are of especial interest in our work.

Following [CKW], we say Λ has the dense orbit property if for every dimension
vector d, and each irreducible component Z in mod(Λ, d), there exists a dense orbit
in Z. Moreover, we say Λ is brick discrete if for each d, there are only finitely
many orbits of bricks in mod(Λ, d). We introduce this new terminology to avoid
the confusion caused by the conflict of terminology. In particular, we remark that
what we called “brick discrete” is named “Schur-representation-finite” in [CKW].

A Λ-module M is rigid if Ext1Λ(M,M) = 0, and it is called τ -rigid provided
HomΛ(M, τΛM) = 0. Here, τΛ denotes the Auslander-Reiten translation, and we
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Figure 1. The map of our work, where the conjectural implica-
tions are depicted by dotted arrows.

often suppress Λ from the notation. By τ -rigid(Λ) we denote the set of isomorphism
classes of basic τ -rigid modules. A rigid module X is called tilting if its projec-
tive dimension is at most one and |X| = |Λ|. Here, |M | denotes the number of
non-isomorphic indecomposable summands of M in ModΛ. Analogously, a τ -rigid
module M is τ -tilting if |M | = |Λ|. By tilt(Λ) and τ -tilt(Λ) we respectively denote
the set of all isomorphism classes of basic tilting modules, and that of all basic
τ -tilting modules in modΛ. In [AIR], the author introduced a modern setup where
many rich ideas from cluster algebras meet with the classical tilting theory. This
also fixed the deficiency of the classical tilting theory with respect to the mutation
of tilting modules (see [BB]). This goal was accomplished by conceptualizing the
notion of mutation of clusters in terms of some homological properties of (support)
τ -tilting modules. For details, see [AIR].

Now we can state the first version of our main conjecture.

Conjecture 1.1 ([Mo2]) For each algebra Λ, the following hold:

(1) If Λ has the dense orbit property, then it is τ -tilting finite.
(2) Λ is brick discrete if and only if Λ is τ -tilting finite.

This conjecture is depicted in Figure 1, which puts our investigations and results
in perspective by relating them to the recent work in [CKW] and [DIJ]. Both parts
of this conjecture first appeared in [Mo2], while the first-named author studied the
τ -tilting finiteness of algebras in his doctoral dissertation.

Because τ -tilting modules are the main ingredient of the modern τ -tilting the-
ory, finding nontrivial conditions such that |τ -tilt(Λ)| <∞ is monumental and has
spurred a lot of research in various areas, including homological algebra, combi-
natorics, lattice theory and geometry (for example, see [DIJ], [DI+], [Mo1], [Pl],
[KPY], and the references therein). In Section 2, we mention some of the key results
that are closely related to the scope of our work, including the “brick τ -rigid corre-
spondence” from [DIJ], which implies |brick(Λ)| <∞ if and only if |τ -tilt(Λ)| <∞.
This allows us to rephrase Conjecture 1.1 in the combinatorial terms, as follows.

Conjecture 1.2 For each algebra Λ, the following hold:

(1) If Λ has the dense orbit property, then it is brick-finite.
(2) Λ is brick infinite if and only if there is an infinite family of non-isomorphic

bricks of length d, for a positive integer d.

In [Mo1, Mo2], the first-named author settled the above conjectures for some
cases and outlined a long-term project to treat the general case. In [MP], we prove
an important reductive theorem to approach this goal. We discuss these results
in Section 2. We also observe that the second part of this version of our main
conjecture also appears in [ST] and is treated for special biserial algebras.
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2. Methodology and Main results

Motivated by the conjectures 1.1 and 1.2, we are only interested in the behav-
ior of representation infinite algebras, and particularly in the size of brick(Λ) and
distributions of bricks over such algebras. Recall that Λ is minimal representation-
infinite (or min-rep-inf, for short) provided Λ is representation infinite but for
every nonzero ideal J of Λ, the quotient algebra Λ/J is rep-finite. In the past 60
years, min-rep-inf algebras have played a pivotal role in representation theory of
associative algebras. This is primarily due to their decisive role in the study of
Brauer-Thrall Conjectures, which are among the cornerstones of modern represen-
tation theory (For the statements of these classical conjectures and more details,
see [ASS, IV.5] and [Bo2].). Thanks to the recent elegant classification of Ringel
[Ri], together with a small observation in [Mo1], we know that every min-rep-inf
algebra falls into (at least) one of the following three subfamilies:

• Mri(FB): min-rep-inf Biserial algebras;
• Mri(FnD): min-rep-inf non-Distributive algebras;

• Mri(FgC): min-rep-inf algebras with a good Covering Λ̃ and a finite convex

subcategory of Λ̃ is tame-concealed of type D̃n or Ẽ6,7,8.

Recall that Λ is biserial if for any left or right non-uniserial indecomposable
projective module P , the radical of P is a sum of two uniserial submodules X and
Y such that X ∩ Y is either zero or a simple module. Since Λ = kQ/I is basic,
this is equivalent to saying that for each x ∈ Q0 and the associated indecomposable
(left or right) projective module Px, we must have rad(Px) = M + N with M
and N uniserial and dimk(M ∩ N) ≤ 1. Moreover, Λ is said to be distributive if
the lattice of two-sided ideals in Λ is distributive. In [Ja], the author shows Λ is
distributive if and only if this lattice is finite. Moreover, all rep-finite algebras are
known to be distributive. Those algebras in Mri(FgC) are characterized in terms of
the properties of their Galois covering, as studied in [BG+].

In 2013 and 2018, Ringel and Bongartz respectively described Mri(FB) and
Mri(FnD) in terms of their bound quivers. In contrast, it is known that the algebras
in Mri(FgC) have no explicit description (for further details, see [Bo2, Bo3]). Based
on the aforementioned elegant classifications in [Ri] and [Bo2], the first-named au-
thor studied the brick (in)finiteness of min-rep-inf algebras, and fully determined
which algebras in Mri(FB) ∪Mri(FnD) are brick-finite and which ones are not. In
the following quivers, those edges which are not directed can take any orientation,
and dashed segments could be of any length and orientations of arrows.

Theorem 2.1 ([Mo1, Mo2]) Let Λ = kQ/I be a minimal representation-infinite
algebra.

(1) If Λ is biserial, then it is brick infinite if and only if (Q, I) is one of the
following bound quivers, where n, p, q, r ∈ Z≥0:

acyclic Ãp:

•αn

•

•
αp+1

α1

•

•
αp•

B(p, q, r):

I := ⟨α1αp, β1βq⟩

◦x

α1

αp

θ1
• •

θr
◦y

β1

βq
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(2) If Λ is non-distributive, then Λ is brick infinite if and only if f (Q, I) is one
of the following bound quivers, with the specified p, q ∈ Z:

A(p, q): ◦aα1

•

•
αp

β1

•

•
βq◦

z
p, q ∈ Z>0

IA := 0

B(p, q): ◦aα1

•

•
αp

β1
•

•
βq
◦
z

γ1

•
γ2

2 = q ≤ p or 3 = q ≤ p ≤ 5
IB := ⟨γ2γ1 + βq · · ·β1 + αp · · ·α1⟩

C(p) : •
•
ρp
•
•
ρ1

•

•
•

◦
a

α

β
◦z

p ∈ Z>0

IC := ⟨ρ1ρp⟩

D(p, q) : •
•
ρp
•
•
ρ1

•

•
•

◦
a

α

β
◦z

γ1
•

•
γq+1

p, q ∈ Z>0

ID := ⟨ρ1ρp, γq+1 · · · γ1 − βα⟩

In [Ri], those min-rep-inf algebras whose bound quiver is of the form B(p, q, r)
are called barbell. For each barbell algebra, the minimality assumption implies that
the bar between vertices x and y is not serial, meaning that the orientation of all
θi’s cannot be in the same direction. Moreover, in a barbell algebra, if αp · · ·α1

and βq · · ·β1 are both cyclic paths in B(p, q, r), we must have r > 0, as otherwise
we get an infinite dimensional algebra.

Thanks to the preceding theorem, we verify Conjecture 1.1 for the entire family
Mri(FB) ∪Mri(FnD). In fact, we prove the following stronger result.

Corollary 2.2 ([Mo2]) Let Λ be a biserial or non-distributive minimal representation-
infinite algebra. Then, Λ is brick infinite if and only if there exists a one-parameter
family {Mλ}λ∈k∗ of non-isomorphic bricks in modΛ which are of the same length.

As a byproduct of our methodology that lead to Theorem 2.1, we obtained that
a gentle algebra is brick-finite if and only if it is rep-finite (for the terminology and
further details, see [Mo1]). This result was also independently shown in [Pl]. In
fact, in retrospect, we proved that a min-rep-inf biserial algebra is brick infinite if
and only if it is gentle. And, for gentle algebras we can verify a stronger version
of Conjecture 1.2. This, together with the recent results form [GL+], implies that
Λ in Mri(FB) is brick infinite if and only if there is a brick component Z in Irr(Λ)

and a rational curve C of non-isomorphic bricks {Mλ} in Z with Z =
⋃

λ∈C OMλ
.

Here, the closure is with respect to Zariski topology.
For an arbitrary algebra Λ, deciding whether or not the conjectures 1.1 and

1.2 hold seems to be currently out of reach. However, we can reduce our conjec-
ture to minimal brick infinite algebras. Those are the algebras Λ such that Λ is
brick infinite but every proper quotient algebra Λ/J is brick-finite. This is the
modern analogue of the notion of minimal representation infinite algebra. The
first reduction to minimal brick infinite algebras relies on a well-known fact: for
any pair of algebras A and B, and each epimorphism of algebras ψ : A → B,
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we get a full embedding of modB into modA. In particular, ind(B) ⊆ ind(A)
and brick(B) ⊆ brick(A) always hold. Before we state some of our new results on
minimal brick infinite algebras and further reduce our conjecture, we recall some
important notions and fundamental theorems which play crucial roles in our work.

A subcategory T of modΛ is called a torsion class if it is closed under quotient
and extension. A torsion class T is functorially finite if T = Fac(M), for some
Λ-module M , where Fac(M) denotes the full subcategory of modΛ consisting of
all modules which are factor modules of a finite direct sum of M . By tors(Λ) we
denote the set of all torsion classes in modΛ, and f-tors(Λ) consists of all those T
in tors(Λ) which are functorially finite. Observe that tors(Λ) comes with a natural
lattice structure. We note that intersection of any family of torsion classes in tors(Λ)
belongs to tors(Λ). Hence, for T1 and T2 in tors(Λ), we define the meet of T1 and
T2 as T1 ∩ T2, whereas their join is considered to be the intersection of all torsion
classes in tors(Λ) that contain T1∪T2. Although f-tors(Λ) inherits this partial order
from tors(A), in general f-tors(Λ) is not a lattice. The lattice theoretical properties
of tors(Λ) and the profound applications of the poset f-tors(Λ) in τ -tilting theory
has been extensively studied in [DI+]. Below, we only summarize some of the key
results used in this note.

Theorem 2.3 [DIJ, DI+] For an algebra Λ, the following are equivalent.

(1) Λ is τ -tilting finite;
(2) f-tors(Λ) = tors(Λ);
(3) tors(Λ) is finite;
(4) τ -rigid(Λ) is finite;
(5) brick(Λ) is finite.

From the preceding theorem, one immediately observes that every minimal brick
infinite algebra is in fact minimal τ -tilting infinite (or min-τ -inf, for short). That
is, Λ is τ -tilting infinite but every proper algebra quotient of Λ is τ -tilting finite.
This, as well as other equivalences in Theorem 2.3, allowed us to employ vari-
ous technologies from homological algebra, lattice theory and combinatorics, while
studying Conjecture 1.1 in the general case. In other words, our ultimate goal is
to give an algebro-geometric incarnation of τ -tilting finiteness and through that
establish novel connections to the important realizations of this notion in other
areas, as depicted in Figure 1.

In [MP], we delved into these connections and used the modern concept of min-
τ -inf algebras both in the treatment of our open conjectures 1.1 and 1.2, as well as
in the more classical setting of tilting theory. Before we state our main reduction
theorem, let us give analogous characterizations of the classical and modern min-
imality conditions discussed in this note. To do so, we first recall that a module
is faithful if its annihilator is trivial. As observed in [MP], from a known result of
Auslander [Au] and the recent work of Sentieri [Se], we have

• Λ is minimal representation infinite if and only if Ind(Λ) \ ind(Λ) ̸= ∅ and
every M ∈ Ind(Λ) \ ind(Λ) is faithful.

• Λ is minimal τ -tilting infinite if and only if Brick(Λ) \ brick(Λ) ̸= ∅ and
every N ∈ Brick(Λ) \ brick(Λ) is faithful.

The next theorem lists some important properties of min-τ -infinite algebras. As
explained in [MP], this theorem also highlights some fundamental differences and
similarities between the min-τ -infinite algebras and the min-rep-inf algebras. We
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recall that a vertex v in (Q, I) is said to be a node if it is neither a sink nor a source,
and for each pair of arrows α and β in Q with e(α) = v = s(β), we have βα ∈ I.
Then, Λ = kQ/I is called node-free if (Q, I) has no nodes. Moreover, Λ is called
central if the center of Λ is k.

Theorem 2.4 Let Λ = kQ/I be a minimal τ -tilting infinite algebra. Then Λ is
node-free and central. Moreover, Λ admits no projective-injective module.

From the previous theorem, in [MP] we obtain an explicit characterization of
τ -tilting finiteness of those algebras Λ = kQ/I which are radical square zero. That
is βα ∈ I, for every pair of arrows α and β in Q. In particular, we easily recovered
the following result of Adachi [Ad] and verified our conjectures 1.1 and 1.2 for this
family of algebras. Below, we say Q is a sink-source quiver if every vertex of Q is
either a sink or a source.

Corollary 2.5 ([Ad] and [MP]) Let Λ = kQ/I be such that rad2(Λ) = 0. The
following are equivalent:

(1) Λ is τ -tilting infinite;
(2) Q contains a sink-source subquiver of affine type.
(3) there exists a one-parameter family {Mλ}λ∈k∗ of non-isomorphic bricks in

modΛ which are of the same length.

To highlight the significance of min-τ infinite algebras in the study of classical
tilting theory, we first remark that unlike the representation finiteness and τ -tilting
finiteness, the notion of tilting finiteness is not preserved under taking algebraic
quotients. More precisely, there exist algebras Λ such that modΛ contains only
finitely many isomorphism classes of tilting modules, but for some ideal J in Λ, the
quotient algebra Λ/J admits infinitely many ismorphism classes of tilting modules.
Nevertheless, one can still define “minimal tilting infinite” algebras, analogous to
the notions of min-rep-inf and min-τ -infinite algebras. Then, it is a natural question
to ask whether this new family manifests any properties similar to min-rep-inf and
min-τ -infinite algebras. We give an answer to this question in the next theorem.
Let us recall that for a collection of objects O, we say almost all objects of O satisfy
property P provided all but finitely many objects of O have property P.

Theorem 2.6 Let Λ = kQ/I be an algebra. If Λ is minimal τ -tilting infinite, the
projective dimension of almost all τ -rigid Λ-modules is exactly one. Thus,

(1) Λ is minimal τ -tilting infinite if and only if it is minimal tilting infinite.
(2) If Λ is minimal tilting infinite, the mutation graph of tilting modules in

modΛ is of degree |Q0| at almost every vertex.

This additional knowledge of min-τ -infinite algebras, and some further geometric
techniques we develop in [MP], allowed us to obtain a better understanding of orbits
of bricks and brick components of brick infinite algebras. This also resulted in a
conceptual proof for an unboundedness theorem on the length of bricks over brick
infinite algebras: If Λ is brick infinite, for each d ∈ Z there is a brick M whose
length is greater than d. This assertion was formerly shown in [STV] through
different techniques. Our approach was based on the geometric study of “minimal
extending brick” in modΛ, which are studied in [BCZ] and [DI+], particularly in
the labelling of the edges of the lattice tors(Λ). More precisely, we showed that if
M is a minimal extending brick of a functorially finite torsion class, then OM is



8 KAVEH MOUSAVAND, CHARLES PAQUETTE

an open orbit, hence OM is a brick component in Irr(Λ). For details on minimal
extending bricks and our geometric approach to their study, see respectively [DI+]
and [MP].

We finish this section by the following reduction theorem in the study of Con-
jecture 1.1. Before we state that, note that a min-τ -infinite algebra may admit in-
finitely many non-isomorphic bricks with distinct annihilators. However, we prove
that it is sufficient to only treat Conjectures 1.1 and 1.2 for a particular subfamily
of brick infinite algebras, as stated in the following theorem.

Theorem 2.7 Conjecture 1.1 (and therefore Conjecture 1.2) holds in general if
and only if it is true for each minimal τ -tilting infinite algebras for which almost all
bricks are faithful. In particular, if a minimal τ -tilting infinite algebra has infinitely
many unfaithful bricks, then it admits an infinite family of bricks of the same length.

3. Future steps and some related problems

As mentioned in Section 1, minimal representation infinite algebras played a
crucial role in the treatment of the celebrated Brauer-Thrall Conjectures. They
were vastly studied to prove that any rep-infinite algebras is both unbounded and
strongly unbounded. That is to say, if Λ is rep-infinite, there is no bound on the
length of modules in ind(Λ), whereas strongly unboundedness asserts there exists an
infinite sequence of positive integers d1 < d2 < d3 < · · · such that for each di there
are infinitely many (isomorphism classes of) indecomposable Λ-modules of length di.
In the paragraph following Theorem 2.6, we remarked that the verbatim counterpart
of unboundedness condition (a.k.a First Brauer-Thrall Conjecture) holds for brick
infinite algebras. However, we warn the reader that for brick infinite algebras,
the analogue of the strongly unboundedness statement (a.k.a Second Brauer-Thrall
Conjecture) is wrong (For example, let Λ be the Kronecker algebra.). Although the
First and Second Brauer-Thrall conjectures were proved more than 30 years ago
(respectively, in 1968 and 1984), and consequently the focus of research was shifted
from the study of min-rep-inf algebras to some other problems, the interest in these
algebras continued beyond their contributions to the proofs of these fundamental
conjectures. In fact, the explicit classification of some families of these algebras
became available only very recently. For more details, see [Bo1, Bo2, Bo3], [Ri],
[Sk], and the references therein.

Motivated by the classification of min-rep-inf algebras recalled in Section 1, it is
natural to ask for an analogous classification of minimal brick infinite algebras in
terms of their quivers and relations. In particular, one may wish to see an explicit
family of minimal brick infinite algebras which are not min-rep-inf. In [Mo1], the
first-named author slightly generalized the family of algebras treated in [Ri], and
introduced “generalized barbell algebras”. This gives an infinite family of gentle
algebras which are minimal brick infinite but there is a proper quotient of them
which is min-rep-inf. In fact, that proper quotient is called a “windwheel algebra”
and are shown to be brick-finite (see [Ri] and [Mo1]).

In our future work, we give a concrete classification of those minimal brick infinite
algebras which are (special) biserial. Namely, we produce the analogue of the recent
results of Ringel [Ri], in which he fully described those minimal representation
infinite algebras which are (special) biserial. Our new results allow us to prove a
stronger version of our main conjectures in Section 1. More specifically, we can
study brick infiniteness of biserial algebras via existence of certain generic modules.
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We recall that an indecomposable Λ-moduleG is generic if it is of infinite length as a
Λ-module, but of finite endolength. Namely, the length of G, viewed as module over
EndΛ(G), is finite. Consequently, by generic brick we mean a generic module whose
endomorphism algebra is a division ring. As shown in [C-B], generic modules play a
fundamental role in the study of representation infinite algebras, and in particular
the tame ones. Thanks to the intuition we have developed through our study of
biserial algebras, we believe that the notion of “generic brick” can provide fresh
impetus to the study of our conjectures 1.1 and 1.2, particularly in the study of
bricks over tame algebras.

Similarly, it is reasonable to search for the full classification of those minimal
brick infinite algebras which are non-distributive. That is to describe the coun-
terpart of the family Mri(FnD) studied in [Bo2]. Particularly, we observe that in
Theorem 2.7, the situation in the last assertion of the theorem can occur only for
non-distributive algebras. Hence, it is natural to ask whether it is true in general
that a minimal brick infinite algebra Λ is non-distributive if and only if brick(Λ)
contains an infinite family of unfaithful bricks. We remark that the analogous
classification holds for min-rep-infinite algebras. That is, a min-rep-inf algebra Λ
is non-distributive if and only if ind(Λ) contains an infinite family of unfaitfhul
modules (for more details, see [Ja], [Ku] and [Bo2]).
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