
STRICT DIHEDRAL ALGEBRAS ARE τ-TILTING FINITE

Abstract

In these notes we show that every algebra of strict dihedral type is τ -tilting finite.
This family of algebras, which originally arise from triangulations of surfaces, gives
a new concrete family of representation-infinite algebras that are τ -tilting finite.
We also compare them with the family of minimal representation-infinite special
biserial algebras and observe that they form two disjoint subfamilies of special
biserial algebras with some interesting properties in common.

1. Preliminaries

Let k be an algebraically closed field. Λ always denotes a finite dimensional
k-algebra and mod Λ is the category of all finitely generated left Λ-modules. Every
quiver Q = (Q0, Q1, s, e) is a directed graph, where the vertex set Q0 and the arrow
set Q1 are assumed to be finite. By l(Λ) we denote the number of isomorphism
classes of simple modules in mod Λ, or, equivalently, the rank of the Grothendieck
group K0(Λ) of Λ. Provided that Λ = kQ/I, where I is an admissible ideal in kQ,
we have l(Λ) = |Q0|. In this case (Q, I) denotes the bound quiver of Λ.

1.1. Algebras of strict dihedral type. Building upon [E1] and [E2], in [ES1] an
algebra Λ with l(Λ) ≥ 2 is called generalized dihedral type if it satisfies the following
properties:

(1) Λ is symmetric, indecomposable and tame.
(2) The stable Auslander-Reiten quiver Γs(Λ) consists of the following com-

poenents:
(i) stable tubes of ranks 1 and 3;

(ii) at least one non-periodic components of the form ZA∞∞ or ZÃn;
(3) ΩΛ fixes all stable tubes of rank 3 in Γs(Λ).

Suppose FgD denotes the family of all algebras of generalized dihedral type.
Then, by the second condition, it is obvious that every Λ in FgD is representation-
infinite algebras. In fact, in [ES1], it is shown that FgD ⊂ FB, where by FB we
denote the family of all biserial algebras. From the defining conditions of algebras
of generalized dihedral type it is evident that there are biserial algebras which
are not of generalized diheral type, thus the aforementioned containment is strict.
For a geometric characterization of the algebras FgD in terms of weighted surface
algebras, see [ES1].

To avoid confusion, we should remark that the notion of algebra of generalized
dihedral type does not extend the family of algebras of dihedral type (as defined in
[E2]) to that of FgD. In particular, suppose FD denotes the family of algebras of
dihedral type, as defined in [E2]. Due to the complete description of the algebras
in FD in terms of their bound quivers, one should note that there exists an algebra
Λ in FD with l(Λ) = 1. This obviously shows that FD 6⊆ FgD.
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An algebra Λ in FgD is called of strict dihedral type if it additionally satisfies the
following conditions:

(4) l(Λ) ≤ 3.
(5) Γs(Λ) has l(Λ)− 1 stable tubes of rank 3.
(6) the Cartan matrix CΛ is non-singular.

Assume FsD denotes the family of all algebras of strict dihedral type. As men-
tioned in [E1], if Λ is a non-local block of a group algebras and the defect group of
Λ is dihedral, then Λ belongs to FsD.

If FsB denotes the family of special biserial algebras, then we have the following
strict containments of the families of algebras we are interested in

FsD ⊂ FgD

∩ ∩
FsB ⊂ FB

The following theorem of Erdmann and Skowroński [ES1] shows that the sub-
family FsD inside the family of all algebras of generalized dihedral type could be
fully characterized in terms of the Cartan matrix CΛ of algebras Λ in FgD.

Theorem 1.1 ([ES1, Theorem 2]) Let Λ be an algebra of generalized dihedral type.
Then, Λ is of strict dihedral type if and only if CΛ is non-singular.

The above theorem immediately implies that for every Λ in FgD with l(Λ) > 3,
the Cartan matrix CΛ is always singular.

Furthermore, a full description of the algebras in FsD in terms of their bound
quivers is given in [ES1], which we recall in the following. To do so, following
Erdmann and Skowroński, we first list three types of bound quivers that arise from
triangulations of weighted surface. For the most part, we follow the notation used
in [ES1] and [ES2]. However, we warn the reader that our order of composition of
arrows is opposite to that used in the aforementioned papers. In particular, if α
and β are two arrows in a quiver Q such that α ends where β starts, we write βα to
denote the path of length two which starts at s(α), first goes through α and then
through β, and it ends at e(β).

For the geometric origin and motivations behind the name associated to each
type of the following bound quivers, see [ES1] and [ES2].

Disc Type. Let Λ(r, s, b) be the algebra given by the quiver

η2
β

γ
1α

subject to the following relations

βα = αγ = γβ = 0

αr = (γηβ)s, (ηβγ)s = (βγη)s, η2 = b(βγη)s,

where r and s are positive integers and b ∈ k.

Two-sum projective Type. Let Γ(r, s, t) be the algebra given by the quiver

ζ3
δ

η
2

β

γ
1α
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subject to the following relations

αγ = βα = γβ = ζδ = ηζ = δη = 0

αr = (γηδβ)s, (ηδβγ)s = (βγηδ)s, ζt = (δβγη)s,

where r, s and t are positive integers.

Triangle Type. Let Ω(a, b, c) be the algebra given by the quiver

◦1 ◦2
α1

β1

α2

β2

3
◦

α3

β3

subject to the following relations

α2α1 = α3α2 = α1α3 = 0 = β3β1 = β2β3 = β1β2

(β1α1)a = (α3β3)c, (β2α2)b = (α1β1)a (β3α3)c = (α2β2)b,

where a, b and c are positive integers.
Using the above terminology, now we can state an important result of [ES1] on

the classification of algebras in the family FsD.

Theorem 1.2 ([ES1, Theorem 8.5]) An algebra Λ = kQ/I is of strict dihedral
type if and only if its bound quiver (Q, I) is disc or two-sum projective or triangle.

1.2. morphisms between string modules. Because our methodology heavily
relies on the analysis of the morphism between string modules over special biserial
algebras, we briefly recall the notion of graph maps, introduced in [CB1] and [S]. As
shown in the aforementioned papers, for every pair of strings v and w in a special
biserial algebra, graph maps form a concrete basis for the space Hom(M(w),M(v)).

Definition 1.3 If Λ = kQ/I is a special biserial algebra, by Str(Λ) we denote the
set of strings in the bound quiver (Q, I). Moreover, for each u ∈ Str(Λ), the set of
factorizations of u is given by

F(u) := {(u3, u2, u1) | u3, u2, u1 ∈ Str(Λ) and u = u3u2u1}.
For every (u3, u2, u1) ∈ F(u), let (u3, u2, u1)−1 := (u−1

1 , u−1
2 , u−1

3 ) ∈ F(u−1). If
(u3, u2, u1) ∈ F(u), then it is called a quotient factorization of u if

(i) u1 = es(u2) or u1 = γ−1u′1 with γ in Q;
(ii) u3 = ee(u2) or u3 = u′3θ with θ in Q.

From each quotient factorization (u3, u2, u1) ∈ F(u), we get a quotient morphism
of Λ-modules from M(u) to M(u2). By Fq(u) we denote the set of all quotient
factorizations of u. The general configuration of every element of Fq(u) can be
visualized as follows, where u1 and u3 can be of length zero.

θ γ

u2 s(u2)e(u2)

••

︸ ︷︷ ︸
u1

︸ ︷︷ ︸
u3

Dual to the above notion, (u3, u2, u1) ∈ F(u) is called a submodule factorization
of u provided that



4 STRICT DIHEDRAL ALGEBRAS ARE τ -TILTING FINITE

(i) u1 = es(u2) or u1 = γu′1 with γ in Q;

(ii) u3 = ee(u2), or u3 = u′3θ
−1 with θ in Q,

and by Fs(u) we denote the set of all submodule factorizations of u. Similarly, every
(u3, u2, u1) in Fs(u) induces an inclusion of the associated Λ-modules, from M(u2)
into M(u). Every such inclusion can also be visualised by a pair of diagrams dual
to the one illustrated above.

Definition 1.4 Let Λ be a special biserial algebra and u, v ∈ Str(Λ). Then, we say
a pair ((u3, u2, u1), (v3, v2, v1)) ∈ Fq(u)×Fs(v) is admissible if u2 = v2 or u2 = v−1

2 .
The collection of all admissible pairs in Fq(u) × Fs(v) is denoted by A(u, v). For
each T = ((u3, u2, u1), (v3, v2, v1)) in A(u, v) consider fT defined as follow: fT is
the composition of the projection M(u)→M(u2), followed by the identification of
M(u2) with M(v2), followed by the inclusion M(v2) → M(v). The resulting map
is a morphism fT : M(u)→M(v) in mod Λ, called the graph map given by T . For
w ∈ Str(Λ), an admissible pair T in A(w,w) is trivial if fT is the identity morphism
id : M(w)→M(w).

The next theorem gives a concrete description of the space of homomorphisms
between string modules. In the following, for two strings u and v, we write u ∼ v,
provided that u = v or u = v−1.

Theorem 1.5 [CB1] Let Λ be a special biserial algebra and u and v are in Str(Λ).
The set of graph maps {fT | T ∈ A(u, v)} forms a basis for HomΛ(M(u),M(v)).
Furthermore, the following are equivalent:

(1) T = ((u3, u2, u1), (v3, v2, v1)) is a non-trivial admissible pair in A(w,w);
(2) There are two distinct substrings u2 and v2 of w such that v2 ∼ u2 which

satisfy w = u3u2u1 and w = v3v2v1 with l(u1)+l(u3) > 0 and l(v1)+l(v3) >
0, where u1 and u3 (respectively v1 and v3) leave u2 (respectively enter v2).

The second part of the above theorem asserts that for each non-trivial endomor-
phism of a string module M(w), there must exist a proper substring of w which
occurs in w at least twice, once on the top w and another time at the bottom of it.
Here, by the top and bottom of w we respectively refer to the local configuration
of u2 and v2 in an admissible pair T = ((u3, u2, u1), (v3, v2, v1)) in A(w,w), which
is illustrated in the following. Note that every such configuration gives rise to a
(non-identity) graph map in EndΛ(M(w)):

v2

u2

γ

v3︷ ︸︸ ︷ v1︷ ︸︸ ︷
θ

ζ︸ ︷︷ ︸
u3

σ︸ ︷︷ ︸
u1

M(w) = M(v3v2v1)

M(u2) 'M(v2)

M(w) = M(u3u2u1)

ι

π

In the above picture, the substrings ui’s and vi’s, for every 1 ≤ i ≤ 3, can be of
any length, provided the satisfy l(u1) + l(u3) > 0 and l(v1) + l(v3) > 0. By these
inequalities we guarantee that at least one of the two arrows σ or ζ (respectively θ or
γ) that leave u2 (respectively which enter v2) is actually present in the configuration.
Each of the squiggly segments of the substrings (except for the specified arrows),
can have any internal configuration of arrows.
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1.3. τ-Tilting theory. Introduced by Adachi, Iyama and Reiten [AIR], the con-
cept of τ -tilting theory is primarily aimed at resolving the deficiency of tilting theory
with respect to mutation. In this subsection we only collect some basic materials
we need in order to recall an explicit criterion for the notion of τ -tilting finiteness of
algebras. For the motivations and further details on the subject, we refer to [AIR],
[DIJ] and [DI+].

Recall that a Λ-module M is called τ -rigid if HomΛ(M, τM) = 0. Let τ -rigid(Λ)
and iτ -rigid(Λ)) respectively denote the set of basic τ -rigid modules and the in-
decomposable τ -rigid modules. A τ -rigid module M is τ -tilting if |M | = |Λ|. Fur-
thermore, M is support τ -tilting if M is τ -tilting over A/〈e〉, for an idempotent e in
A. By τ -tilt(Λ) and sτ -tilt(Λ) we respectively denote the set of all basic τ -tilting
modules and that of all basic support τ -tilting modules in mod Λ. Consequently, Λ
is called τ -tilting finite if |τ -tilt(Λ)| <∞. From the Auslander-Reiten duality, it is
immediate that every τ -rigid module is rigid.

We also recall that M is a brick if EndΛ(M) is a division algebra. It is known
that over algebraically closed fields, M is a brick if and only if EndΛ(M) ' k. In
fact, over an arbitrary field k, by the explicit construction of graph maps between
string modules, it is easy to show that a string module X is a brick if and only if
EndΛ(X) is isomorphic to k. Let brick(Λ) denote the set of bricks in mod Λ. From
the definition it is obvious that brick(Λ) consists of indecomposable modules.

A full subcategory of mod Λ is a torsion class if it is closed under quotient
and extension. A torsion class T is functorially finite, in the sense of [AR1], if
T = Gen(M), for some Λ-module M . By tors(Λ) we denote the set of all torsion
classes in mod Λ, while f-tors(Λ) is the set of all functorially finite torsion classes.
In a subcategory C of mod Λ, a module X ∈ C is said to be Ext-projective if
Ext1

A(X,−)|C = 0.
The following theorem establishes a connection between the above notions.

Theorem 1.6 ([AIR, Theorem 2.7]) For each algebra Λ, there is a bijection be-
tween sτ -tilt(Λ) and f-tors(Λ). In particular, in one direction, each basic support
τ -tilting module X is sent to Gen(X). In the other direction, every T ∈ f-tors(Λ)
is sent to XT =

⊕
Xi, where the direct sum runs over the isomorphism classes of

all Ext-projective indecomposable modules Xi in T .

Now that for an algebra Λ we have seen a correspondence between support τ -
tilting modules and the functorially finite torsion classes of mod Λ, we present some
important equivalent conditions that describe τ -tilting finiteness of Λ. Through the
following theorem, we view the notion of τ -tilting finiteness as a natural generaliza-
tion of the notion of representation-finiteness of algebras. This is because, as shown
in [AR1], an algebra Λ is representation-finite if and only if every (full) subcategory
of mod Λ is functorially finite. The study of τ -tilting finiteness of algebras from
thie viewpoint has been already exploited for the family (special) biserial algebras
(for details, see [Mo]).

Theorem 1.7 ([DIJ, DI+]) For an algebra Λ, the following are equivalent.

(1) Λ is τ -tilting finite;
(2) f-tors(Λ) = tors(Λ);
(3) tors(Λ) is finite;
(4) iτ -rigid(Λ) is finite;
(5) brick(Λ) is finite.
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Let us finish this subsection by recalling an important result in the τ -tilting
theory from the lattice theoretical point of view. In particular, in [Mo], the author
uses a more elementary version of the following statement to reduce the problem
of τ -tilting infiniteness of biserial algebras to the min-rep-infinite biserial algebras,
which are significantly more tractable.

Theorem 1.8 ([DI+]) Every surjective morphism φ : Λ1 → Λ2 of algebras induces

a surjective lattice map φ̃ : tors(Λ1) → tors(Λ2), defined by φ̃(T ) := T ∩ mod Λ2,
for each T ∈ tors(Λ1). In particular, if Λ1 is τ -tilting finite, so is Λ2.

2. Main Results

The main theorem of these notes is the following:

Theorem 2.1 Every algebra of strict dihedral type is τ -tilting finite.

To prove the above assertion, by Theorem 1.7, it suffices to show that every
algebra of strict dihedral type admits only finitely many isomorphism classes of
bricks. For the sake of readability, we prove the above theorem via a sequence of
lemmas. To simplify the proofs, let us first fix some terminology in the following
definition.

Definition 2.2 Let kQ/I be a special biserial algebra and u and v be strings in

(Q, I). Suppose u = αεmm · · ·α
ε1
2 α

ε1
1 and v = βδn · · ·βδ22 β

δ1
1 , for some αi, βj ∈ Q1

and εi, δj ∈ {±1}, for every 1 ≤ i ≤ m and 1 ≤ j ≤ n.

(1) For an arrow γ ∈ Q1, the string u supports γ provided αεii = γ or αεii = γ−1,
for some 1 ≤ i ≤ p. For a vertex x ∈ Q0, we say u visits x if s(αi) = x or
e(αi) = x, for some 1 ≤ i ≤ m.

(2) u passes through x if x = e(α
εj
j ) = s(α

εj+1

j+1 ), for some 1 ≤ j < m. In this
case, we say x is a plain vertex of u if εi = εi+1. Otherwise, u changes
direction at x.

(3) We say tail of u collides with head of v if e(u) = s(v) and εm = −δ1,

but αεmm 6= β−δ11 . Then, the ordered pair (u, v) is called tail-head collision.
Moreover, such a tail-head collision pair (u, v) is called an up-down collision
if εm = −1 and down-up collision otherwise.

The following configurations illustrate a tail-head collision pair (u, v) at the ver-
tex x = e(u) = s(v), where the string w := vu changes direction. In particular,
the left picture is an up-down collision, whereas the right picture is a down-up
collision. We remark that the length and orientation of the dashed segments could
be anything and they may also share some arrows or vertices.

αεmm

•

◦

•• •
α
εm−1

m−1 · · ·α
ε1
1

βδ11

βδnn · · ·β
δ2
2

x

Up-down collision: εm = −1 and δ1 = 1.

αεmm
α
εm−1

m−1 · · ·α
ε1
1

•

◦

•• •
βδ11

βδnn · · ·β
δ2
2

x

Down-up collision: εm = 1 and δ1 = −1.

Now that we have the required terminology and tools at our disposal, we outline
our main strategy. The rest of this section is mainly devoted to showing that for
every algebra Λ of strict dihedral type, brick(Λ) is always finite, which itself, by
Theorem 1.7, is equivalent to τ -tilting finiteness of Λ. To accomplish this goal,
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recall that every algebra of strict dihedral type is special biserial and by Theorem
1.2, the bound quiver of every such algebra Λ is fully described. Hence, we employ
the methodology of [Mo] for the the study of τ -tilting finiteness of (special) biserial
algebras.

It is known that if Λ is special biserial, every indecomposable Λ-module M is
either a string module, or a band module, or M is projective-injective. Because
there is only finitely many of the last type of indecomposable modules, we only need
to show that for each Λ in FsD, almost every string and band Λ-module admits a
nontrivial endomorphism which is not invertible. Hence, for an algebras of strict
dihedral type, using the explicit description of its bound quiver given in Section
1, first we show that there is a sufficiently large integer d such that for any string
w = θ

εp
p · · · θε22 θ

ε1
1 in Str(Λ) whose length p is larger than d, the string module

M(w) is never a brick. Similarly, we show that if w is a band, every band module
associated to that is not a brick either. In fact, for every indecomposable M in
mod Λ which is a string or band module, we find a vertex x in the corresponding
string w that appears both on the top and in the bottom of w. This implies the
simple module Sx is a summand of both the top and the socle of M , and from
this we get a non-invertible nonzero endomorphism of the string or band module
M , arising from a pair of morphisms π : M(w) → Sx and ι : Sx → M(w), which
are respectively an epimorphism and a monomorphism of Λ-modules. Through
the composition ι ◦ π : M(w) → M(w), we have a nonzero map in EndΛ(M(w))
which is not invertible. This implies that for almost all Λ-modules M , we have
dimk(EndΛ(M)) ≥ 2 and therefore brick(Λ) is finite.

Remark 2.3 In each of the following proofs, depending on the bound quiver
of the algebra we treat, one can potentially find a precise linear formula for the
boundary used for the length of strings. However, since we are primarily interested
in the problem of finiteness of string and band modules that are brick, we do not
specify the smallest boundary that could be used, and instead give a sufficiently
large number in terms of a non-linear equation given by the integers that come with
the bound quivers.

We start by analyzing the brick finiteness of the the simplest subfamily of
algebras of strictly dihedral type, which consists of the algebras in FsD whose
Grothendieck group is of rank 2.

Lemma 2.4 If Λ is an algebra of disc type, then it is brick-finite.

Proof. From Theorem 1.2, we know that Λ is of the form Λ(r, s, b), for some integers
r > 1 and s > 0 and some b in k, as in the previous section.

First we show that for every string w = θ
εp
p · · · θε22 θ

ε1
1 in Str(Λ(r, s, b)), if p is

sufficiently large, the string module M(w) is not a brick (for example, assume
p > 4(r + s)r+s).

We claim that if w supports α, vertex 1 appears both on the top and in the
bottom of w, hence M(w) admits a nontrivial endomorphism given by the compo-
sition M(w) � S1 ↪→ M(w), which passes through the simple module S1 and is
not invertible. To see this, let u be a maximal sequence of α (or α−1) which appear
in w. Namely, u is a substring of w of the form u = αd, for some nonzero integer
d that is maximal with this property. Then, s(u) = e(u) = 1 and one of these two
vertices is necessarily on the top and the other one is in the bottom of M(w).
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Now we assume w does not support α. Moreover, from our assumption it is
immediate that w supports each of the arrows β, γ and η and passes through both
vertices 1 and 2. Because w does not support α, vertex 1 can only appear as
transition vertex of w. However, the relations in the bound quiver and the length
of the string w implies that w must change the direction, which occurs at 2. This
puts S2 either in the socle or top of M(w). Without loss of generality, suppose the
first change of direction puts S2 in the socle of M(w). Then, due to the length of
w, it is easy to see there must also exists another change of direction in w which
occurs at 2 and puts S2 in the top of M(w) and we get the desired result.

The same argument shows that every band in Str(Λ) also admits a nonzero
endomorphism which is not invertible.

�

Now we analyze the brick-finiteness of the rest of algebras in FsD. The next
lemma addresses the algebras of the two-sum projective type, as defined in the
previous section.

Lemma 2.5 Suppose Λ is an algebra of two-sum projective type. Then Λ is brick-
finite.

Proof. By Theorem 1.2, Λ is isomorphic to an algebra of the form Γ(r, s, t), for
some positive integers r, s and t.

Let w = θ
εp
p · · · θε22 θ

ε1
1 be in Str(Γ(r, s, t)) whose length is sufficiently large, say

for example p > 5(r + s+ t)r+s+t. We show that M(w) is not a brick.
First we remark that, due to the relations of the bound quiver of Γ(r, s, t), the

same argument as in Lemma 2.4 shows that if w supports α (respectively ζ), then
vertex 1 (respectively 3) appears both on the top and in the bottom of w. Hence,
we restrict to the case where w does not support α nor ζ and show that there still
exists a vertex that occurs both on the top and in the bottom of w.

Analogous to the second part of the proof of Lemma 2.4, since w does not support
α and ζ, vertices 1 and 3 can appear only as the plain vertices of w. Moreover,
because of the relations in the bound quiver and the length of w, one observes that
w must change direction, which must occur at vertex 2 and this puts S2 in the
socle or top of M(w). Furthermore, because the length of w is chosen sufficiently
large, the relations implies that in fact w changes the direction at least twice which
happens at vertex 2 and puts S2 both in the socle and top of M(w) and gives the
desired result.

As for the band modules over Λ, note that if w is a band in Str(Λ), due to the
relations in the bound quiver of Γ(r, s, t), we observe that w must visit all vertices.
Hence, the same argument as above shows that the associated band modules admit
a nonzero endomorphism which is not invertible. This finishes the proof.

�

In the next lemma, we treat the brick-finiteness of the last type of algebras of
strict dihedral type.

Lemma 2.6 If Λ is an algebra of triangle type, then it is brick-finite.

Proof. By Theorem 1.2, Λ is of the form Ω(a, b, c), for some positive integers a, b
and c. Suppose w = θ

εp
p · · · θε22 θ

ε1
1 in Str(Λ(r, s, b)) such that p is sufficiently large

(for instance, assume p > 4(a+b+c)a+b+c). We show that the string module M(w)
is not a brick.
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First note that, due to the relations of the bound quiver and the assumption on
the length of the string, w changes direction at every vertex of Ω(a, b, c) (therefore
it passes through all vertices). Because the local configuration at every vertex is
similar, we only prove that for the string w if s(w) = 1, then M(w) has a nontrivial
endomorphism which is not invertible. Given that s(w) = 1, then θε11 belongs to
the set {α1, β3, β

−1
1 , α−1}.

If θε11 = α1, vertex 1 is on the top of w. If 1 also appears in the bottom of
w, we are done. Thus we assume otherwise. This implies that for any other θεii
with e(θεii ) = 1, vertex 1 must occur either as a plain vertex of w or on the top
of w. Namely, for every 1 < i ≤ p with e(θεii ) = 1, we either have a plain at 1
(being θ

εi+1

i+1 θ
εi
i = α1β1 or θ

εi+1

i+1 θ
εi
i = β3α3), or otherwise w changes direction via an

up-down collision at 1 (being θ
εi+1

i+1 θ
εi
i = α1β

−1
3 or θ

εi+1

i+1 θ
εi
i = β3α

−1
1 ).

Suppose 1 < j < p is such that e(θ
εj
j ) = 3 and j is minimal with this property.

Hence, the substring θ
εj−1

j−1 · · · θ
ε2
2 θ

ε1
1 of w only visits vertices 1 and 2, and does not

support any arrow from the set {α2, α3, β2, β3}. Moreover, θ
εj−1

j−1 · · · θ
ε2
2 θ

ε1
1 does not

change direction, thus every vertex that it passes thorough is a plain vertex (note
that we may have j−1 = 1, meaning that θ

εj−1

j−1 · · · θ
ε2
2 θ

ε1
1 visits 1 and 2 but does not

pass through any vertex).From this, observe that the substring θ
εj
j θ

εj−1

j−1 · · · θ
ε2
2 θ

ε1
1 of

w has exactly one change of direction at vertex e(θ
εj−1

j−1 ). We conclude θ
εj
j 6= α−1

3 :

because if θ
εj
j = α−1

3 , then by minimality of j we should get θ
εj
j θ

εj−1

j−1 = α−1
3 β1,

which puts 1 in the bottom of w and contradicts our assumption.
Because θε11 = α1, θ

εj
j 6= α−1

3 , and θ
εj−1

j−1 · · · θ
ε2
2 θ

ε1
1 of w does not visit 3, from the

quadratic relations β3β1 = 0 and α2α1 = 0 (respectively at vertices 1 and 2) we are
left with only one choice, being θ

εj
j = β−1

2 . In fact we get θ
εj
j θ

εj−1

j−1 = β−1
2 α1, which

is a down-up collision in w that puts vertex 2 in the bottom of w.
Now, suppose j < j′ < p is the smallest integer such that e(θ

εj′

j′ ) = 1. Due

to the length of w and the relations of the bound quiver, such j′ exists. Note
that θ

εj
j = β−1

2 . Thus, due to the quadratic relations at vertices 2 and 3, we

either have θ
εj′

j′ = β1 or θ
εj′

j′ = α3. The former case (i.e, θ
εj′

j′ = β1) implies that

θ
εj′

j′ θ
εj′−1

j′−1 = β1α
−1
2 , which is an up-down collision at vertex 2 and puts it on the top

of w. Hence, in the substring θ
εj′

j′ · · · θ
ε1
1 , vertex 2 appears both on the top and in

the bottom, and this gives the desired result. So, suppose θ
εj′

j′ = α3, which implies

θ
εj′

j′ θ
εj′−1

j′−1 = α3β
−1
2 and puts vertex 3 on the top of w.

By a similar argument, there exits j′ < j′′ < p such that e(θ
εj′′

j′′ ) = 2. Considering

that θ
εj′

j′ = α3 and because of the quadratic relations at vertices 1 and 3, the two

possible cases are θ
εj′′

j′′ = β−1
1 or θ

εj′′

j′′ = α−1
2 . Checking these two cases, one easily

concludes that if θ
εj′′

j′′ = β−1
1 , then θ

εj′′

j′′ θ
εj′′−1

j′′−1 = β−1
1 α3, which puts 1 in the bottom

of w. This, along with the fact that s(w) = 1 is on the top of w, gives the desired

result. Similarly, θ
εj′′

j′′ = α−1
2 implies θ

εj′′

j′′ θ
εj′′−1

j′′−1 = α−1
2 β3, which puts 3 in the

bottom of w. This, along with θ
εj′

j′ θ
εj′−1

j′−1 = α3β
−1
2 , shows that S3 is both in the

socle and top of M(w), so we are done.
The analogous analysis, based on the change of direction the string w must make

to respect the relations of the bound quiver, shows that for all other possibilities,
being θε11 = β3, θε11 = β−1

1 and θε11 = α−1
3 , we can always find a vertex appearing

both on the top and in the bottom of w, hence the string module M(w) is not a
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brick. Moreover, from the same argument we conclude that for every band w in
Str(Λ), the associated band modules admit nonzero endomorphisms which are not
invertible. This completes the proof.

�

Now we prove Theorem 2.1.

Proof of Theorem 2.1. By Theorem 1.2, every algebra Λ of strict dihedral type is
of disc type, two-sum projective type or triangle type. By Lemmas 2.4, 2.5 and
2.6, each of these algebras is brick finite. Hence, by Theorem 1.7, Λ is τ -tilting
finite. �

The following result is an immediate consequence of Theorem 1.1 and Theorem
2.1.

Corollary 2.7 Let Λ be an algebra of generalized dihedral type. If the Cartan
matrix of Λ is non-singular, then Λ is τ -tilting finite.

Remark 2.8 Comparing with the new results on τ -tilting finiteness of biserial
algebras in [Mo], one notes that Theorem 2.1, along with Theorem 1.2, gives a
new family of (special) biserial algebras in terms of their bound quivers which are
representation infinite but τ -tilting finite. In the next section we further investigate
the algebras of strict dihedral type from the viewpoint of minimal representation-
infinite algebras to derive some new results on their module category and their
Auslander-Reiten components.

We finish this section with a direct consequence of Theorem 2.1 on the set of basic
tilting and basic cotilting modules over algebras of strict dihedral type. Recall that
M in mod Λ is called tilting if pdΛ(M) ≤ 1, Ext1

Λ(M,M) = 0 and |M | = |Λ|, where
|M | denotes the number of non-isomorphic indecomoposable direct summands of
M . A cotilting modules is defined dually.

Corollary 2.9 For every algebra Λ of strict dihedral type, the sets of tilting mod-
ules and cotilting modules in mod Λ coincide and they are finite.

Proof. Note that a τ -tilting module is tilting if and only if it is faithful (for example,
see [AIR]). Now, the statements follows from the fact that Λ is symmetric and by
Theorem 2.1 it is τ -tilting finite. �

Using our results in this section, one can further investigate the algebras of strict
dihedral type via the simplical complexes which are naturally associated to every
such algebra. On the one hand, thanks to the preceding corollary, we can study
every algebra Λ of strcit dihedral type from the viewpoint introduced by Riedtmann
and Schofiled [RS], where a simiplicial complex is associated to algebras with finitely
many tilting modules. On the other hand, one can use the set of τ -tilting modules
over such algebras and, following the approach of [DIJ], consider the associated
simplicial complex give by the τ -tilting modules over Λ.

Finally, we note that τ -tilting finiteness of algebras of strict dihedral type pro-
vides a deep insight into their module category and their bounded derived category.
This is the case because for a τ -tilting finite algebra Λ, by Theorem 1.6, every tor-
sion class T in mod Λ is functorially finite (i.e, T = Gen(X), for some support
τ -tilting module X) and the lattice tors(Λ) is finite. Moreover, by [DIJ] one can
derive new results on the g-vectors of support τ -tilting modules over every algebra



STRICT DIHEDRAL ALGEBRAS ARE τ -TILTING FINITE 11

of strict dihedral type. Knowing that these algebras are τ -tilting finite, by [KY] one
can also study the silting complexes, t-structures and co-t-structures of every Λ in
FsD. Additionally, thanks to the explicit bijection between the set of all wide sub-
categories and the set of torsion classes of every τ -tilting finite algebra (see [MS]),
for each Λ in FsD one can further investigate the wide subcategories in mod Λ as
well as the lattice structures on wide(Λ) and tors(Λ), which respectively denote the
set of all wide subcategories and torsion classes.

3. Quotients of strict dihedral algebras

As remarked in the previous sections, every algebra of generalized dihedral type
is biserial (see [ES1, Corollary 3]). Moreover, FsD, which denotes the family of
all algebras of strict dihedral type, is a subfamily of special biserial algebras FsB.
Following [Mo], we say a family F of k-algebras is quotient-closed if for every pair of
k-algebras Λ and Λ′ and a surjective morphism of algebras φ : Λ→ Λ′, if Λ belongs
to F, then so does Λ′. From [CB+], we know that the family of all biserial k-algebras
is quotient-closed. Furthermore, as shown in [Mo] and it is easy to check, the family
of special biserial algebras is also quotient-closed. However, we remark that neither
FsD nor FgD is quotient-closed, simply because they all consist of representation-
infinite algebras. In fact, thanks to the explicit description of algebras in FsD, one
observes that if Λ is of strict dihedral type, there exists a representation-infinite
quotient Λ′ of Λ such that Λ′ is not in FsD.

We recall that Λ is minimal representation-infinite (or min-rep-infinite, for short)
if Λ is representation-infinite but every quotient algebra Λ/J is representation-finite,
where J is a nonzero two-sided ideal of Λ. Moreover, for a family of k-algebras F,
by Mri(F) we denote the family of all min-rep-infinite algebras in F. As explained in
[R2], the study of minimal representation-infinite algebras has played a decisive roles
in development of representation theory of algebras in 80’s and 90’s, in particular
in the complete proof of the second Brauer-Thrall conjecture. Among the min-
rep-infinite algebras, those which form Mri(FsB) are extensively studied in [R2],
primarily because they are of significant interest in various areas of mathematics
(e.g. cluster algebras, geometry, combinatorics, mirror symmetry, etc.) and feature
the most explicit description between all the min-rep-infinite algebras.

On the other hand, as remarked in [DIJ], the notion of τ -tilting finiteness of
algebras can be naturally viewed as a modern generalization of representation-
finiteness. Inspired by the conceptual classification of min-rep-infinite algebras
recently considered in the work of Bongartz [Bo3] and Ringel [R2], in [Mo] the
author introduces the notion of minimal τ -tilting infinite algebras and gives an
explicit description of some important families of such algebras in FB. Analogous
to the classical definition given above, we say Λ is minimal τ -tilting infinite if Λ is
τ -tilting infinite and every proper quotient of it is τ -tilting finite. Obviously, for a
family F of algebras, every τ -tilting infinite algebra Λ in Mri(F) is minimal τ -tilting
infinite. In the case of (special) biserial algebras which closely relate to the scope
of this paper (due to the containment FsD ( FsB), in fact in [Mo] it is shown that
Λ in Mri(FB) is minimal τ -tilting infinite if and only if Λ is a gentle algebra.

As mentioned at the end of the preceding section, FsD gives another explicit
infinite family of rep-infinite special biserial algebras which are τ -tilting finite. In
this section, we aim to compare FsD and Mri(FsB), as two interesting subfamilies of
special biserial algebras. We should remark that, as explained in the following, these
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two interesting rep-infinite subfamilies of (special) biserial algebras are disjoint.
Therefore, at least at the first glance, it may seem that may not share non-trivial
fundamental properties. As we will see, this is not the case. In what follows, we
try to verify which of the nice properties that hold for τ -tilting finite members of
Mri(FsB) in fact hold for those in FsD. To further investigate this comparison, we
first recall some terminology.

In order to avoid confusion raised by the difference between the widely used
terminology in the literature and that appearing in [HV], following [Mo] we say
Λ = kQ/I is weakly minimal representation-infinite if Λ is rep-infinite but for each
vertex x ∈ Q0, the quotient algebra Λ/〈ex〉 is rep-finite. Obviously, every min-
rep-infinite algebra is weakly min-rep-infinite algebra but the converse does not
hold. We also recall that a component C of the Auslander-Reiten quiver Γ(Λ) is
called generalized standard provided rad∞Λ (X,Y ) = 0, for each pair X and Y in
C. It is known that a stable tube T in Γ(Λ) is generalized standard if and only if
rad∞Λ (X,Y ) = 0, for every pair of modules on the mouth of T . This itself is known
to be equivalent to the fact that the mouth of T consists of pairwise Hom-orthogonal
bricks (for example, see [SS, X.3.3 and X.4.5]).

Now we can state the following proposition on some properties of algebras of
strict dihedral type and their rep-infinite quotients.

Proposition 3.1 Let Λ be an algebra of strict dihedral type and Λ′ be a represen-
tation infinite quotient of Λ. Then, the following hold:

(1) Λ is weakly minimal representation-infinite but not minimal representation-
infinite.

(2) Λ′/〈soc(Λ′)〉 is a representation-infinite string algebra.
(3) Γ(Λ′) has no preprojective (nor preinjective) component and it has only

finitely many generalized standard tubes.

Before proving the above statements we remark that if Λ = kQ/I is a self-
injective algebra and Λ′ = kQ/I ′ is a quotient of Λ, then Λ′ needs not to be
self-injective. Once again, this implies that unlike the family of (special) biserial
algebras, the family of algebras of generalized (similarly strict) dihedral type is not
quotient-closed. Hence, the components of the Auslander-Reiten quivers of Λ′ do
not necessarily satisfy the defining properties of algebras of generalized dihedral
type. We wish to also direct the reader to [HV], where Happel and Vossicek give a
concrete description of those weakly minimal representation-infinite algebras which
admit a preprojective components. By the last part of the above proposition, in
fact we claim that if Λ = kQ/I and Λ′ = kQ/I ′ is as in the third part of the
statement, the bound quiver (Q, I ′) never appears on the list given in [HV].

The following lemma is well-known and plays an important role in the proof of
the preceding proposition. For a proof of it we refer to [Mo, Lemma 3.1].

Lemma 3.2 Let Λ be an algebra and M be a projective-injective module in mod Λ.
Then, Λ and Λ/〈soc(M)〉 are of the same representation-type. In particular, a
special biserial algebra Λ is representation-infinite if and only if so is Λ/〈soc(M)〉.

Moreover, we recall the following useful criterion for the τ -tilting infiniteness
from [Mo].

Lemma 3.3 For every algebra Λ, if the Auslander-Reiten quiver ΓΛ of Λ admits
a preprojective (similarly preinjective) component, then Λ is τ -tilting infinite.
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Now we can prove the above proposition.

Proof of Proposition 3.1. To be added! �

Analogous to the notation introduced for a family of algebras, if Λ is an algebra,
then by Mri(Λ) we denote the family of all isomorphism classes of quotient algebras
Λ′ of Λ such that Λ′ is minimal representation-infinite. Obviously, Mri(Λ) = ∅ if
and only if Λ is represenation-finite.

Theorem 3.4 Let Λ be an algebra of strict dihedral type. Every Λ′ in Mri(Λ) is
a nody algebra.

In order to show the above theorem, we need to recall some terminology and
results from [Mo].

Definition 3.5 Let Λ = kQ/I be an algebra. A vertex x in Q is called a node if
for every arrow α with e(α) = x and every arrow β with s(β) = x we have βα ∈ I.
Moreover, if Λ = kQ/I is minimal representation-infinite special biserial, it is said
to be nody if (Q, I) has a node.

Furthermore, we have the following result on the τ -tilting finiteness of nody
algebras. For the proof, see [Mo, Proposition 5.10].

Proposition 3.6 Every nody algebra is τ -tilting finite.

As shown in [Mo, Theorem 6.6], if Λ is a minimal representation-infinite algebra
and it is τ -tilting finite, then Λ is either a nody algebra or it is of another type,
which is called wind wheel. For the definition and properties of the latter family of
special biserial algebras, see [R2] and [Mo].

Now we can proof the preceding theorem.

Proof of Theorem 3.4. Suppose Λ′ = kQ′/I ′ belongs to Mri(Λ). By Theorem [Mo,
Theorem 6.6], (Q′, I ′) is either a wind wheel or a nody bound quiver. We consider
all possible cases. Moreover, Theorem 1.2 implies that the algebra Λ is either of
disc type, or two-sum projective or of triangle type.

If Λ is of disk type. Then it is isomorphic to Λ(r, s, b), for some positive integers r
and s and some b in k \ {0}. Because the arrows β and γ are involved in quadratic
relations in the bound quiver (Q, I) of Γ(r, s, t), they cannot be a bar in the bound
quiver of (Q′, I ′). Hence, they both are present in (Q′, I ′) which implies that Λ′ is
not a wind wheel algebra. Therefore, Λ′ must be a nody algebra.

If Λ is of two-sum projective type. The bound quiver of Λ is given by that of Γ(r, s, t)
for some positive integers r, s and t. Because the arrows β, γ, δ and η are involved
in quadratic relations in the bound quiver (Q, I) of Γ(r, s, t), they cannot form a
bar in the bound quiver of (Q′, I ′). If w ∈ Str(Λ) is a band, we can alsways assume
s(w) = 2. Moreover, if w supports α (respectively β), then it must support β
and γ (respectively δ and η). Hence, the pair β and γ (or similarly δ and η) are
simultaneously present in (Q′, I ′) which implies that Λ′ cannot be a wind wheel
algebra. Hence, (Q′, I ′) is always a nody algebra.
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If Λ is of triangle type. In this case we have Λ is isomorphic to an algebra Ω(a, b, c),
for some positive integers a, b and c. Because every arrow of the bound quiver is
involved in exactly two quadratic relation, it is easy to see that if (Q′, I ′) is the
bound quiver of Λ′, we cannot have a bar in (Q′, I ′), implying that Λ′ cannot be
a wind wheel algebra. This, along with [Mo, Theorem 6.6], implies that (Q′, I ′)
contains a node and, which is the desired result. �
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